Latest Trends

Floss-based vaccination targets the gingival sulcus for mucosal and systemic immunization

  • Shakya, A. K., Chowdhury, M. Y. E., Tao, W. & Gill, H. S. Mucosal vaccine delivery: current state and a pediatric perspective. J. Control. Release 240, 394–413 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alsbrooks, K. & Hoerauf, K. Prevalence, causes, impacts, and management of needle phobia: an international survey of a general adult population. PLoS ONE 17, e0276814 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deuchert, E. & Brody, S. Lack of autodisable syringe use and health care indicators are associated with high HIV prevalence: an international ecologic analysis. Ann. Epidemiol. 17, 199–207 (2007).

    PubMed 

    Google Scholar 

  • Lycke, N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12, 592–605 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Azzi, L. et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. eBioMedicine 75, 103788 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kraan, H. et al. Buccal and sublingual vaccine delivery. J. Control. Release 190, 580–592 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, J.-H. et al. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc. Natl Acad. Sci. USA 105, 1644–1649 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGhee, J. R. & Fujihashi, K. Inside the mucosal immune system. PLoS Biol. 10, e1001397 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6, 148–158 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Paris, A. L., Colomb, E., Verrier, B., Anjuère, F. & Monge, C. Sublingual vaccination and delivery systems. J. Control. Release 332, 553–562 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mokabari, K., Iriti, M. & Varoni, E. M. Mucoadhesive vaccine delivery systems for the oral mucosa. J. Dent. Res. 102, 709–718 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Shimono, M. et al. Biological characteristics of the junctional epithelium. J. Electron Microsc. 52, 627–639 (2003).

    CAS 

    Google Scholar 

  • Bosshardt, D. D. & Lang, N. P. The junctional epithelium: from health to disease. J. Dent. Res. 84, 9–20 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Luke, D. A. The structure and functions of the dentogingival junction and periodontal ligament. Br. Dent. J. 172, 187–190 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Stern, I. B. Current concepts of the dentogingival junction: the epithelial and connective tissue attachments to the tooth. J. Periodontol. 52, 465–476 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • Oh, C., Kim, H. J. & Kim, H. M. Transepithelial channels for leukocytes in the junctional epithelium. J. Periodontal Res. 57, 1093–1100 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Dutzan, N., Konkel, J. E., Greenwell-Wild, T. & Moutsopoulos, N. M. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 9, 1163–1172 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boese, S. & Gill, H. S. Coated floss for drug delivery into the gum pocket. Int. J. Pharm. 606, 120855 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Subbarao, K. C. et al. Gingival crevicular fluid: an overview. J. Pharm. Bioallied Sci. 11, S135–S139 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ainai, A., Suzuki, T., Tamura, S. I. & Hasegawa, H. Intranasal administration of whole inactivated influenza virus vaccine as a promising influenza vaccine candidate. Viral Immunol. 30, 451–462 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Seasonal flu vaccines. Centers for Disease Control and Prevention https://www.cdc.gov/flu/vaccines/keyfacts.html (2024).

  • Gresset-Bourgeois, V. et al. Quadrivalent inactivated influenza vaccine (VaxigripTetra™). Exp. Rev. Vaccines 17, 1–11 (2018).

    CAS 

    Google Scholar 

  • Haugh, M., Gresset-Bourgeois, V., Macabeo, B., Woods, A. & Samson, S. I. A trivalent, inactivated influenza vaccine (Vaxigrip®): summary of almost 50 years of experience and more than 1.8 billion doses distributed in over 120 countries. Exp. Rev. Vaccines 16, 545–564 (2017).

    CAS 

    Google Scholar 

  • Murdin, A. D., Barreto, L. & Plotkin, S. Inactivated poliovirus vaccine: past and present experience. Vaccine 14, 735–746 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Tao, Y. Y. et al. Quadrivalent influenza vaccine (Sinovac Biotech) for seasonal influenza prophylaxis. Exp. Rev. Vaccines 20, 1–11 (2021).

    CAS 

    Google Scholar 

  • Vaccines licensed for use in the United States. US Food and Drug Administration https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (2023).

  • Estrada, L. D. & Schultz-Cherry, S. Development of a universal influenza vaccine. J. Imunol. 202, 392–398 (2019).

    CAS 

    Google Scholar 

  • Sautto, G. A., Kirchenbaum, G. A. & Ross, T. M. Towards a universal influenza vaccine: different approaches for one goal. Virol. J. 15, 17 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pica, N. & Palese, P. Toward a universal influenza virus vaccine: prospects and challenges. Ann. Rev. Med. 64, 189–202 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Taubenberger, J. K. & Morens, D. M. 1918 Influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. C., Sayedahmed, E. E., Sambhara, S. & Mittal, S. K. Progress towards the development of a universal influenza vaccine. Viruses https://doi.org/10.3390/v14081684 (2022).

  • Tao, W., Ziemer, K. S. & Gill, H. S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine 9, 237–251 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Tao, W. et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antivir. Res. 141, 62–72 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ingrole, R. S. J., Tao, W., Joshi, G. & Gill, H. S. M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine 39, 4800–4809 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sjökvist Ottsjö, L. et al. Induction of mucosal immune responses against Helicobacter pylori infection after sublingual and intragastric route of immunization. Immunology 150, 172–183 (2017).

    PubMed 

    Google Scholar 

  • Liao, S. & von der Weid, P. Y. Lymphatic system: an active pathway for immune protection. Semin. Cell Dev. Biol. 38, 83–89 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Reichel, C. A. et al. Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler. Thromb. Vasc. Biol. 29, 1787–1793 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann. Rev. Immunol. 13, 251–276 (1995).

    CAS 

    Google Scholar 

  • Liang, C. K. et al. COVID-19 vaccines in older adults: challenges in vaccine development and policy making. Clin. Geriatr. Med. 38, 605–620 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baldwin, S. L. et al. Improved immune responses in young and aged mice with adjuvanted vaccines against H1N1 influenza infection. Front. Immunol. 9, 295 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • García, M., Misplon, J. A., Price, G. E., Lo, C.-Y. & Epstein, S. L. Age dependence of immunity induced by a candidate universal influenza vaccine in mice. PLoS ONE 11, e0153195 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K.-H. et al. Immunogenicity and neutralizing activity comparison of SARS-CoV-2 spike full-length and subunit domain proteins in young adult and old-aged mice. Vaccines 9, 316 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bang, Y. J. et al. Effective inactivated influenza vaccine for the elderly using a single-stranded RNA-based adjuvant. Sci. Rep. 11, 11981 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baldo, V. et al. Immunogenicity of three different influenza vaccines against homologous and heterologous strains in nursing home elderly residents. Clin. Dev. Immunol. 2010, 517198 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • DiazGranados, C. A. et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. New Engl. J. Med. 371, 635–645 (2014).

    PubMed 

    Google Scholar 

  • Chahine, E. B. High-dose inactivated influenza vaccine quadrivalent for older adults. Ann. Pharmacother. 55, 89–97 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mohan, T. et al. Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses. Sci. Rep. 7, 40226 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keller, L.-A., Merkel, O. & Popp, A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 12, 735–757 (2022).

    PubMed 

    Google Scholar 

  • Mutsch, M. et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. New Engl. J. Med. 350, 896–903 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Boese, S. & Gill, H. S. Drug-coated floss to treat gum diseases: in vitro and in vivo characterization. ACS Appl. Mater. Interfaces 14, 28663–28670 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y., Mutukuri, T. T., Wilson, N. E. & Zhou, Q. T. Pharmaceutical protein solids: drying technology, solid-state characterization and stability. Adv. Drug Deliv. Rev. 172, 211–233 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amorij, J. P., Huckriede, A., Wilschut, J., Frijlink, H. W. & Hinrichs, W. L. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm. Res. 25, 1256–1273 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, L. Y. et al. Enhanced stability of inactivated influenza vaccine encapsulated in dissolving microneedle patches. Pharm. Res. 33, 868–878 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Teeth development in children. Better Health Channel https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/teeth-development-in-children#rpl-skip-link (2021).

  • Kraan, H., Soema, P., Amorij, J.-P. & Kersten, G. Intranasal and sublingual delivery of inactivated polio vaccine. Vaccine 35, 2647–2653 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Tiwari, M. et al. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 27, 2513–2522 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Uddin, M. J. & Gill, H. S. From allergen to oral vaccine carrier: a new face of ragweed pollen. Int. J. Pharm. 545, 286–294 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button