Floss-based vaccination targets the gingival sulcus for mucosal and systemic immunization

Shakya, A. K., Chowdhury, M. Y. E., Tao, W. & Gill, H. S. Mucosal vaccine delivery: current state and a pediatric perspective. J. Control. Release 240, 394–413 (2016).
Google Scholar
Alsbrooks, K. & Hoerauf, K. Prevalence, causes, impacts, and management of needle phobia: an international survey of a general adult population. PLoS ONE 17, e0276814 (2022).
Google Scholar
Deuchert, E. & Brody, S. Lack of autodisable syringe use and health care indicators are associated with high HIV prevalence: an international ecologic analysis. Ann. Epidemiol. 17, 199–207 (2007).
Google Scholar
Lycke, N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12, 592–605 (2012).
Google Scholar
Azzi, L. et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. eBioMedicine 75, 103788 (2022).
Google Scholar
Kraan, H. et al. Buccal and sublingual vaccine delivery. J. Control. Release 190, 580–592 (2014).
Google Scholar
Song, J.-H. et al. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc. Natl Acad. Sci. USA 105, 1644–1649 (2008).
Google Scholar
McGhee, J. R. & Fujihashi, K. Inside the mucosal immune system. PLoS Biol. 10, e1001397 (2012).
Google Scholar
Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6, 148–158 (2006).
Google Scholar
Paris, A. L., Colomb, E., Verrier, B., Anjuère, F. & Monge, C. Sublingual vaccination and delivery systems. J. Control. Release 332, 553–562 (2021).
Google Scholar
Mokabari, K., Iriti, M. & Varoni, E. M. Mucoadhesive vaccine delivery systems for the oral mucosa. J. Dent. Res. 102, 709–718 (2023).
Google Scholar
Shimono, M. et al. Biological characteristics of the junctional epithelium. J. Electron Microsc. 52, 627–639 (2003).
Google Scholar
Bosshardt, D. D. & Lang, N. P. The junctional epithelium: from health to disease. J. Dent. Res. 84, 9–20 (2005).
Google Scholar
Luke, D. A. The structure and functions of the dentogingival junction and periodontal ligament. Br. Dent. J. 172, 187–190 (1992).
Google Scholar
Stern, I. B. Current concepts of the dentogingival junction: the epithelial and connective tissue attachments to the tooth. J. Periodontol. 52, 465–476 (1981).
Google Scholar
Oh, C., Kim, H. J. & Kim, H. M. Transepithelial channels for leukocytes in the junctional epithelium. J. Periodontal Res. 57, 1093–1100 (2022).
Google Scholar
Dutzan, N., Konkel, J. E., Greenwell-Wild, T. & Moutsopoulos, N. M. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 9, 1163–1172 (2016).
Google Scholar
Boese, S. & Gill, H. S. Coated floss for drug delivery into the gum pocket. Int. J. Pharm. 606, 120855 (2021).
Google Scholar
Subbarao, K. C. et al. Gingival crevicular fluid: an overview. J. Pharm. Bioallied Sci. 11, S135–S139 (2019).
Google Scholar
Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).
Google Scholar
Ainai, A., Suzuki, T., Tamura, S. I. & Hasegawa, H. Intranasal administration of whole inactivated influenza virus vaccine as a promising influenza vaccine candidate. Viral Immunol. 30, 451–462 (2017).
Google Scholar
Seasonal flu vaccines. Centers for Disease Control and Prevention https://www.cdc.gov/flu/vaccines/keyfacts.html (2024).
Gresset-Bourgeois, V. et al. Quadrivalent inactivated influenza vaccine (VaxigripTetra™). Exp. Rev. Vaccines 17, 1–11 (2018).
Google Scholar
Haugh, M., Gresset-Bourgeois, V., Macabeo, B., Woods, A. & Samson, S. I. A trivalent, inactivated influenza vaccine (Vaxigrip®): summary of almost 50 years of experience and more than 1.8 billion doses distributed in over 120 countries. Exp. Rev. Vaccines 16, 545–564 (2017).
Google Scholar
Murdin, A. D., Barreto, L. & Plotkin, S. Inactivated poliovirus vaccine: past and present experience. Vaccine 14, 735–746 (1996).
Google Scholar
Tao, Y. Y. et al. Quadrivalent influenza vaccine (Sinovac Biotech) for seasonal influenza prophylaxis. Exp. Rev. Vaccines 20, 1–11 (2021).
Google Scholar
Vaccines licensed for use in the United States. US Food and Drug Administration https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (2023).
Estrada, L. D. & Schultz-Cherry, S. Development of a universal influenza vaccine. J. Imunol. 202, 392–398 (2019).
Google Scholar
Sautto, G. A., Kirchenbaum, G. A. & Ross, T. M. Towards a universal influenza vaccine: different approaches for one goal. Virol. J. 15, 17 (2018).
Google Scholar
Pica, N. & Palese, P. Toward a universal influenza virus vaccine: prospects and challenges. Ann. Rev. Med. 64, 189–202 (2013).
Google Scholar
Taubenberger, J. K. & Morens, D. M. 1918 Influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).
Google Scholar
Wang, W. C., Sayedahmed, E. E., Sambhara, S. & Mittal, S. K. Progress towards the development of a universal influenza vaccine. Viruses https://doi.org/10.3390/v14081684 (2022).
Tao, W., Ziemer, K. S. & Gill, H. S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine 9, 237–251 (2014).
Google Scholar
Tao, W. et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antivir. Res. 141, 62–72 (2017).
Google Scholar
Ingrole, R. S. J., Tao, W., Joshi, G. & Gill, H. S. M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine 39, 4800–4809 (2021).
Google Scholar
Sjökvist Ottsjö, L. et al. Induction of mucosal immune responses against Helicobacter pylori infection after sublingual and intragastric route of immunization. Immunology 150, 172–183 (2017).
Google Scholar
Liao, S. & von der Weid, P. Y. Lymphatic system: an active pathway for immune protection. Semin. Cell Dev. Biol. 38, 83–89 (2015).
Google Scholar
Reichel, C. A. et al. Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler. Thromb. Vasc. Biol. 29, 1787–1793 (2009).
Google Scholar
Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).
Google Scholar
Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann. Rev. Immunol. 13, 251–276 (1995).
Google Scholar
Liang, C. K. et al. COVID-19 vaccines in older adults: challenges in vaccine development and policy making. Clin. Geriatr. Med. 38, 605–620 (2022).
Google Scholar
Baldwin, S. L. et al. Improved immune responses in young and aged mice with adjuvanted vaccines against H1N1 influenza infection. Front. Immunol. 9, 295 (2018).
Google Scholar
García, M., Misplon, J. A., Price, G. E., Lo, C.-Y. & Epstein, S. L. Age dependence of immunity induced by a candidate universal influenza vaccine in mice. PLoS ONE 11, e0153195 (2016).
Google Scholar
Kim, K.-H. et al. Immunogenicity and neutralizing activity comparison of SARS-CoV-2 spike full-length and subunit domain proteins in young adult and old-aged mice. Vaccines 9, 316 (2021).
Google Scholar
Bang, Y. J. et al. Effective inactivated influenza vaccine for the elderly using a single-stranded RNA-based adjuvant. Sci. Rep. 11, 11981 (2021).
Google Scholar
Baldo, V. et al. Immunogenicity of three different influenza vaccines against homologous and heterologous strains in nursing home elderly residents. Clin. Dev. Immunol. 2010, 517198 (2010).
Google Scholar
DiazGranados, C. A. et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. New Engl. J. Med. 371, 635–645 (2014).
Google Scholar
Chahine, E. B. High-dose inactivated influenza vaccine quadrivalent for older adults. Ann. Pharmacother. 55, 89–97 (2021).
Google Scholar
Mohan, T. et al. Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses. Sci. Rep. 7, 40226 (2017).
Google Scholar
Keller, L.-A., Merkel, O. & Popp, A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 12, 735–757 (2022).
Google Scholar
Mutsch, M. et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. New Engl. J. Med. 350, 896–903 (2004).
Google Scholar
Boese, S. & Gill, H. S. Drug-coated floss to treat gum diseases: in vitro and in vivo characterization. ACS Appl. Mater. Interfaces 14, 28663–28670 (2022).
Google Scholar
Chen, Y., Mutukuri, T. T., Wilson, N. E. & Zhou, Q. T. Pharmaceutical protein solids: drying technology, solid-state characterization and stability. Adv. Drug Deliv. Rev. 172, 211–233 (2021).
Google Scholar
Amorij, J. P., Huckriede, A., Wilschut, J., Frijlink, H. W. & Hinrichs, W. L. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm. Res. 25, 1256–1273 (2008).
Google Scholar
Chu, L. Y. et al. Enhanced stability of inactivated influenza vaccine encapsulated in dissolving microneedle patches. Pharm. Res. 33, 868–878 (2016).
Google Scholar
Teeth development in children. Better Health Channel https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/teeth-development-in-children#rpl-skip-link (2021).
Kraan, H., Soema, P., Amorij, J.-P. & Kersten, G. Intranasal and sublingual delivery of inactivated polio vaccine. Vaccine 35, 2647–2653 (2017).
Google Scholar
Tiwari, M. et al. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 27, 2513–2522 (2009).
Google Scholar
Uddin, M. J. & Gill, H. S. From allergen to oral vaccine carrier: a new face of ragweed pollen. Int. J. Pharm. 545, 286–294 (2018).
Google Scholar




