Breaking News

Limits of cellular integration measures evaluated using drift islands

  • De Sande, BV et al. Applications of unique RNA sequencing in the discovery and development of drugs. Nat. Rev. DRUG DISNOV. 22496–520 (2023).

    Pubmed Pubmed Central Google Scholar article

  • Zhang, MJ et al. Polygenic enrichment distinguishes associations from individual cell disease in monomecellular RNA-SEQ data. Nat. Broom. 541572–1580 (2022).

    Article Pubmed Pubmed Central Google Scholar

  • ROOD, I et al. Impact of the human cell atlas on medicine. Night. With. 282486–2496 (2022).

    Pubmed Google Scholar case article

  • ROOD, I et al. The human cellular atlas of a cell census to a unified foundation model. Nature 6371065–1071 (2025).

    Pubmed Google Scholar case article

  • Hao, Y. et al. Integrated analysis of unicellular multimodal data. Cell 1843573-3587.e29 (2021).

    Article Pubmed Pubmed Central Google Scholar

  • Theodoris, CV et al. Learning transfer allows predictions in network biology. Nature 618616–624 (2023).

    Article Pubmed Pubmed Central Google Scholar

  • Heimberg, G. et al. A model of the cellular atlas for the evolutionary research of similar human cells. Nature 6381085–1094 (2025).

    Pubmed Google Scholar case article

  • Rosen, Y. et al. Universal cellular incorporations: a foundation model for cell biology. Pre -impression Biorhive https://doi.org/10.1101/2023.11.28.568918 (2023).

  • Cui, H. et al. SCGPT: towards the construction of a foundation model for single cell multi-orders using generative AI. Nat. Methods 211470–1480 (2024).

    Pubmed Google Scholar case article

  • Hao, M. et al. Large -scale foundation model on the single transcriptomic. Nat. Methods 211481–1491 (2024).

    Pubmed Google Scholar case article

  • LueCken, MD et al. The integration of data at the Atlas level into the single genomics. Nat. Methods 1941–50 (2022).

    Pubmed Google Scholar case article

  • Tran, htn et al. A benchmark of lots effect correction methods for single cell RNA sequencing data. Genome Biol. 2112 (2020).

    Article Pubmed Pubmed Central Google Scholar

  • Wang, H. et al. Scientific discovery in the era of artificial intelligence. Nature 62047–60 (2023).

    Pubmed Google Scholar case article

  • Liu, T., Li, K., Wang, Y., Li, H. & Zhao, H. Evaluate the utilities of foundation models in cell data analysis. Pre -impression Biorhive https://doi.org/10.1101/2023.09.08.555192 (2023).

  • Kedzierska, Kz, Crawford, L., Amin, AP & Lu, The assessment of AX Zero fire reveals the limits of single cell foundation models. Genome Biol. 26101 (2025).

    Pubmed Pubmed Central Google Scholar article

  • Zhang, H., Cisse, M., Dauphin, Yn & Lopez-Paz, D. Mixp: Beyond the empirical minimization of risks. Pre -impression on https://arxiv.org/abs/1710.09412 (2018).

  • Siletti, K. et al. Transcriptomic diversity of cell types through the adult human brain. Science 382EADD7046 (2023).

    Pubmed Google Scholar case article

  • Kumar, T. et al. A single -cell genomic atlas spatially resolved with adult human breast. Nature 620181–191 (2023).

    Article Pubmed Pubmed Central Google Scholar

  • WANG, SK et al. Monocellular multiom of human retina and in -depth learning call causal variants in complex eye diseases. Cell through. 2100164 (2022).

    Article Pubmed Pubmed Central Google Scholar

  • Elmentaite, R. et al. The unique sequencing of the human intestine in development reveals transcriptional links with Crohn’s disease of childhood. Dev. Cell 55771-783.e5 (2020).

    Article Pubmed Pubmed Central Google Scholar

  • Knight-Schrijver, VR et al. A unique comparison of adult and fetal human epicardy defines the changes associated with age in epicardial activity. Nat. Cardiovasc. Res. 11215–1229 (2022).

    Article Pubmed Pubmed Central Google Scholar

  • Him, P. et al. An atlas of human fetal pulmonary cells discovers the gradients of proximal-detestal differentiation and the key regulators of epithelial destinies. Cell 1854841–4860.e25 (2022).

    Pubmed Google Scholar case article

  • Sole-Boldo, L. et al. Unicellular transcriptomes of human skin reveal a loss of priming linked to age. Common. Biol. 3188 (2020).

    Pubmed Pubmed Central Google Scholar article

  • Heumos, L. et al. Best practices for unique analysis through the modalities. Nat. Rev. Broom. 24550–572 (2023).

    Pubmed Google Scholar case article

  • Korsunsky, I. et al. Quick, sensitive and precise integration of unicellular data with harmony. Nat. Methods 161289–1296 (2019).

    Article Pubmed Pubmed Central Google Scholar

  • HIE, B., BRYSON, B. & BERGER, B. Effective integration of unicellular heterogeneous transcriptomes using Scanorama. Nat. Biotechnol. 37685–691 (2019).

    Article Pubmed Pubmed Central Google Scholar

  • Polaughtski, K. et al. BBKNN: Quick lot of unicellular transcriptomes. Bioinformatics 36964–965 (2020).

    Pubmed Google Scholar article

  • Haghverdi, L. et al. The effects in batches in single cell RNA sequencing data are corrected by matching the nearest mutual neighbors. Nat. Biotechnol. 36421–427 (2018).

    Article Pubmed Pubmed Central Google Scholar

  • Lopez, R. et al. Deep generative modeling for unique transcriptomic. Nat. Methods 151053–1058 (2018).

    Article Pubmed Pubmed Central Google Scholar

  • XU, C. et al. Probabilistic harmonization and annotation of unique transcriptomic data with deep generative models. Mol. System. Biol. 17E9620 (2021).

    Pubmed Pubmed Central Google Scholar article

  • Lotfollahi, M., Wolf, Fa & Theis, FJ SCGEN predicts single cell disturbance responses. Nat. Methods 16715–721 (2019).

    Pubmed Google Scholar case article

  • De Donno, C. et al. Integration into the population level of single cell data sets allows a multi-scale analysis between samples. Nat. Methods 201683–1692 (2023).

    Pubmed Pubmed Central Google Scholar article

  • Khosla, P. et al. Supervised contrast learning. In Progress of neural information processing systems 33 (Eds Larogeller, H. it old.) 18661-18673 (Neirips, 2020).

  • Hoffer, E. & Ailon, N. deep metric learning using the triplet network. In Recognition of models based on similarity: Simbad 2015 (Eds Feragen, A. et al.) 84–92 (Springer, 2015).

  • Sikkema, L. et al. An integrated cell atlas of the human lung in health and disease. Night. With. 291563–1577 (2023).

    Article Pubmed Pubmed Central Google Scholar

  • XU, C. et al. Harmonization and automatic cell type integration through human cell atlas data sets. Cell 1865876–5891.e20 (2023).

    Pubmed Google Scholar case article

  • Wolf, FA, Angerer, P. & Theis, FJ Scanpy: Analysis of expression data for large -scale monocellular genes. Genome Biol. 1915 (2018).

    Pubmed Pubmed Central Google Scholar article

  • Van der Maaten, L. & Hinton, G. View the data using T-SNE. J. Mach. Learn. Res. 92579–2605 (2008).

    Google Scholar

  • Becht, E. et al. Reduction of dimensionality to visualize unicellular data using UMAP. Nat. Biotechnol. 3738–44 (2019).

    Google Scholar case article

  • Gayoso, A. et al. A Python library for the probabilistic analysis of cells with cells. Nat. Biotechnol. 40163–166 (2022).

    Pubmed Google Scholar case article

  • Su, Y. et al. Multi-orders resolves a clear difference in the state of disease between the Light and Moderate COVVI-19. Cell 1831479–1495.e20 (2020).

    Article Pubmed Pubmed Central Google Scholar

  • LueCken, M. et al. The integration of levels of the analysis of the analysis of the Atlas in the sets of data of single genomic tasks – Integration. fighare https://doi.org/10.6084/m9.figshare.12420968 (2022).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button