Limits of cellular integration measures evaluated using drift islands

De Sande, BV et al. Applications of unique RNA sequencing in the discovery and development of drugs. Nat. Rev. DRUG DISNOV. 22496–520 (2023).
Zhang, MJ et al. Polygenic enrichment distinguishes associations from individual cell disease in monomecellular RNA-SEQ data. Nat. Broom. 541572–1580 (2022).
ROOD, I et al. Impact of the human cell atlas on medicine. Night. With. 282486–2496 (2022).
ROOD, I et al. The human cellular atlas of a cell census to a unified foundation model. Nature 6371065–1071 (2025).
Hao, Y. et al. Integrated analysis of unicellular multimodal data. Cell 1843573-3587.e29 (2021).
Theodoris, CV et al. Learning transfer allows predictions in network biology. Nature 618616–624 (2023).
Heimberg, G. et al. A model of the cellular atlas for the evolutionary research of similar human cells. Nature 6381085–1094 (2025).
Rosen, Y. et al. Universal cellular incorporations: a foundation model for cell biology. Pre -impression Biorhive https://doi.org/10.1101/2023.11.28.568918 (2023).
Cui, H. et al. SCGPT: towards the construction of a foundation model for single cell multi-orders using generative AI. Nat. Methods 211470–1480 (2024).
Hao, M. et al. Large -scale foundation model on the single transcriptomic. Nat. Methods 211481–1491 (2024).
LueCken, MD et al. The integration of data at the Atlas level into the single genomics. Nat. Methods 1941–50 (2022).
Tran, htn et al. A benchmark of lots effect correction methods for single cell RNA sequencing data. Genome Biol. 2112 (2020).
Wang, H. et al. Scientific discovery in the era of artificial intelligence. Nature 62047–60 (2023).
Liu, T., Li, K., Wang, Y., Li, H. & Zhao, H. Evaluate the utilities of foundation models in cell data analysis. Pre -impression Biorhive https://doi.org/10.1101/2023.09.08.555192 (2023).
Kedzierska, Kz, Crawford, L., Amin, AP & Lu, The assessment of AX Zero fire reveals the limits of single cell foundation models. Genome Biol. 26101 (2025).
Zhang, H., Cisse, M., Dauphin, Yn & Lopez-Paz, D. Mixp: Beyond the empirical minimization of risks. Pre -impression on https://arxiv.org/abs/1710.09412 (2018).
Siletti, K. et al. Transcriptomic diversity of cell types through the adult human brain. Science 382EADD7046 (2023).
Kumar, T. et al. A single -cell genomic atlas spatially resolved with adult human breast. Nature 620181–191 (2023).
WANG, SK et al. Monocellular multiom of human retina and in -depth learning call causal variants in complex eye diseases. Cell through. 2100164 (2022).
Elmentaite, R. et al. The unique sequencing of the human intestine in development reveals transcriptional links with Crohn’s disease of childhood. Dev. Cell 55771-783.e5 (2020).
Knight-Schrijver, VR et al. A unique comparison of adult and fetal human epicardy defines the changes associated with age in epicardial activity. Nat. Cardiovasc. Res. 11215–1229 (2022).
Him, P. et al. An atlas of human fetal pulmonary cells discovers the gradients of proximal-detestal differentiation and the key regulators of epithelial destinies. Cell 1854841–4860.e25 (2022).
Sole-Boldo, L. et al. Unicellular transcriptomes of human skin reveal a loss of priming linked to age. Common. Biol. 3188 (2020).
Heumos, L. et al. Best practices for unique analysis through the modalities. Nat. Rev. Broom. 24550–572 (2023).
Korsunsky, I. et al. Quick, sensitive and precise integration of unicellular data with harmony. Nat. Methods 161289–1296 (2019).
HIE, B., BRYSON, B. & BERGER, B. Effective integration of unicellular heterogeneous transcriptomes using Scanorama. Nat. Biotechnol. 37685–691 (2019).
Polaughtski, K. et al. BBKNN: Quick lot of unicellular transcriptomes. Bioinformatics 36964–965 (2020).
Haghverdi, L. et al. The effects in batches in single cell RNA sequencing data are corrected by matching the nearest mutual neighbors. Nat. Biotechnol. 36421–427 (2018).
Lopez, R. et al. Deep generative modeling for unique transcriptomic. Nat. Methods 151053–1058 (2018).
XU, C. et al. Probabilistic harmonization and annotation of unique transcriptomic data with deep generative models. Mol. System. Biol. 17E9620 (2021).
Lotfollahi, M., Wolf, Fa & Theis, FJ SCGEN predicts single cell disturbance responses. Nat. Methods 16715–721 (2019).
De Donno, C. et al. Integration into the population level of single cell data sets allows a multi-scale analysis between samples. Nat. Methods 201683–1692 (2023).
Khosla, P. et al. Supervised contrast learning. In Progress of neural information processing systems 33 (Eds Larogeller, H. it old.) 18661-18673 (Neirips, 2020).
Hoffer, E. & Ailon, N. deep metric learning using the triplet network. In Recognition of models based on similarity: Simbad 2015 (Eds Feragen, A. et al.) 84–92 (Springer, 2015).
Sikkema, L. et al. An integrated cell atlas of the human lung in health and disease. Night. With. 291563–1577 (2023).
XU, C. et al. Harmonization and automatic cell type integration through human cell atlas data sets. Cell 1865876–5891.e20 (2023).
Wolf, FA, Angerer, P. & Theis, FJ Scanpy: Analysis of expression data for large -scale monocellular genes. Genome Biol. 1915 (2018).
Van der Maaten, L. & Hinton, G. View the data using T-SNE. J. Mach. Learn. Res. 92579–2605 (2008).
Google Scholar
Becht, E. et al. Reduction of dimensionality to visualize unicellular data using UMAP. Nat. Biotechnol. 3738–44 (2019).
Gayoso, A. et al. A Python library for the probabilistic analysis of cells with cells. Nat. Biotechnol. 40163–166 (2022).
Su, Y. et al. Multi-orders resolves a clear difference in the state of disease between the Light and Moderate COVVI-19. Cell 1831479–1495.e20 (2020).
LueCken, M. et al. The integration of levels of the analysis of the analysis of the Atlas in the sets of data of single genomic tasks – Integration. fighare https://doi.org/10.6084/m9.figshare.12420968 (2022).