Antibody–bottlebrush prodrug conjugates for targeted cancer therapy

Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
Google Scholar
Wang, Z., Li, H., Gou, L., Li, W. & Wang, Y. Antibody–drug conjugates: recent advances in payloads. Acta Pharm. Sin. B 13, 4025–4059 (2023).
Google Scholar
Hobson, A. D. Chapter One – Antibody drug conjugates beyond cytotoxic payloads. Prog. Med. Chem. 62, 1–59 (2023).
Google Scholar
Tarantino, P., Ricciuti, B., Pradhan, S. M. & Tolaney, S. M. Optimizing the safety of antibody–drug conjugates for patients with solid tumours. Nat. Rev. Clin. Oncol. 20, 558–576 (2023).
Google Scholar
Dumontet, C., Reichert, J. M., Senter, P. D., Lambert, J. M. & Beck, A. Antibody–drug conjugates come of age in oncology. Nat. Rev. Drug Discov. 22, 641–661 (2023).
Google Scholar
Chalouni, C. & Doll, S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res. 37, 20 (2018).
Google Scholar
Tashima, T. Delivery of drugs into cancer cells using antibody–drug conjugates based on receptor-mediated endocytosis and the enhanced permeability and retention effect. Antibodies 11, 78 (2022).
Google Scholar
ADCs’ revival. Nat. Biotechnol. 41, 740 (2023).
Tarantino, P. et al. Antibody–drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 72, 165–182 (2022).
Google Scholar
Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).
Google Scholar
Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).
Google Scholar
Gan, H. K., van den Bent, M., Lassman, A. B., Reardon, D. A. & Scott, A. M. Antibody–drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat. Rev. Clin. Oncol. 14, 695–707 (2017).
Google Scholar
Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the ‘biological missile’ for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).
Google Scholar
Tong, J. T. W., Harris, P. W. R., Brimble, M. A. & Kavianinia, I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules 26, 5847 (2021).
Google Scholar
Criscitiello, C., Morganti, S. & Curigliano, G. Antibody–drug conjugates in solid tumors: a look into novel targets. J. Hematol. Oncol. 14, 20 (2021).
Google Scholar
Nagayama, A., Ellisen, L. W., Chabner, B. & Bardia, A. Antibody–drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target. Oncol. 12, 719–739 (2017).
Google Scholar
Jabbour, E., Paul, S. & Kantarjian, H. The clinical development of antibody–drug conjugates—lessons from leukaemia. Nat. Rev. Clin. Oncol. 18, 418–433 (2021).
Google Scholar
Yu, B. & Liu, D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J. Hematol. Oncol. 12, 94 (2019).
Google Scholar
Zhao, P. et al. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B 10, 1589–1600 (2020).
Google Scholar
Nessler, I., Menezes, B. & Thurber, G. M. Key metrics to expanding the pipeline of successful antibody–drug conjugates. Trends Pharmacol. Sci. 42, 803–812 (2021).
Google Scholar
Mckertish, C. M. & Kayser, V. Advances and limitations of antibody drug conjugates for cancer. Biomedicines 9, 872 (2021).
Google Scholar
Su, Z. et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharm. Sin. B 11, 3889–3907 (2021).
Google Scholar
Abelman, R. O., Wu, B., Spring, L. M., Ellisen, L. W. & Bardia, A. Mechanisms of resistance to antibody–drug conjugates. Cancers 15, 1278 (2023).
Google Scholar
Nguyen, T. D., Bordeau, B. M. & Balthasar, J. P. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers 15, 713 (2023).
Google Scholar
Chudasama, V., Maruani, A. & Caddick, S. Recent advances in the construction of antibody–drug conjugates. Nat. Chem. 8, 114–119 (2016).
Google Scholar
Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).
Google Scholar
Adams, E., Wildiers, H., Neven, P. & Punie, K. Sacituzumab govitecan and trastuzumab deruxtecan: two new antibody–drug conjugates in the breast cancer treatment landscape. ESMO Open 6, 100204 (2021).
Google Scholar
Goldenberg, D. M. & Sharkey, R. M. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin. Biol. Ther. 20, 871–885 (2020).
Google Scholar
Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).
Google Scholar
Rubahamya, B., Dong, S. & Thurber, G. M. Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data. Sci. Adv. 10, eadk1894 (2024).
Google Scholar
Kukkar, D., Kukkar, P., Kumar, V., Hong, J. & Kim, K. H. A. Deep, recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens. Bioelectron. 173, 112787 (2021).
Google Scholar
Yurkovetskiy, A. V. et al. Dolaflexin: a novel antibody–drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol. Cancer Ther. 20, 885–895 (2021).
Google Scholar
Müllner, M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem. Commun. 58, 5683–5716 (2022).
Google Scholar
Johnson, J. A. et al. Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to. J. Am. Chem. Soc. 133, 559–566 (2011).
Google Scholar
Golder, M. R. et al. Reduction of liver fibrosis by rationally designed macromolecular telmisartan prodrugs. Nat. Biomed. Eng. 2, 822–830 (2018).
Google Scholar
Bhagchandani, S. H. et al. Engineering kinetics of TLR7/8 agonist release from bottlebrush prodrugs enables tumor-focused immune stimulation. Sci. Adv. 9, eadg2239 (2023).
Google Scholar
Liao, L. et al. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc. 136, 5896–5899 (2014).
Google Scholar
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
Google Scholar
Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).
Google Scholar
Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).
Google Scholar
Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113, 4905–4979 (2013).
Google Scholar
Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).
Google Scholar
Fu, L., Zhang, T., Fu, G. & Gutekunst, W. R. Relay conjugation of living metathesis polymers. J. Am. Chem. Soc. 140, 12181–12188 (2018).
Google Scholar
Knall, A. C. & Slugovc, C. Inverse electron demand Diels–Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42, 5131–5142 (2013).
Google Scholar
Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).
Google Scholar
Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).
Google Scholar
Oh, D. Y. & Bang, Y. J. HER2-targeted therapies—a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).
Google Scholar
Nakada, T., Sugihara, K., Jikoh, T., Abe, Y. & Agatsuma, T. The latest research and development into the antibody–drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem. Pharm. Bull. (Tokyo) 67, 173–185 (2019).
Google Scholar
Hou, Y. & Lu, H. Protein PEPylation: a new paradigm of protein–polymer conjugation. Bioconjug. Chem. 30, 1604–1616 (2019).
Google Scholar
Chen, P., Yun, W., Sun, T., Lin, J. & Zhang, K. Enabling safer, more potent oligonucleotide therapeutics with bottlebrush polymer conjugates. J. Control. Release 366, 44–51 (2024).
Google Scholar
Yu, X. et al. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature 614, 539–547 (2023).
Google Scholar
Oostindie, S. C., Lazar, G. A., Schuurman, J. & Parren, P. W. H. I. Avidity in antibody effector functions and biotherapeutic drug design. Nat. Rev. Drug Discov. 21, 715–735 (2022).
Google Scholar
Gall, V. A. et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 77, 5374–5383 (2017).
Google Scholar
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).
Google Scholar
Vohidov, F. et al. Design of BET inhibitor bottlebrush prodrugs with superior efficacy and devoid of systemic toxicities. J. Am. Chem. Soc. 143, 4714–4724 (2021).
Google Scholar
Zafar, H., Liu, B., Nguyen, H. V. T. & Johnson, J. A. Caspase-3-responsive, fluorogenic bivalent bottlebrush polymers. ACS Macro Lett. 13, 571–576 (2024).
Google Scholar
Tsao, L. et al. Effective extracellular payload release and immunomodulatory interactions govern the therapeutic effect of trastuzumab deruxtecan (T-DXd). Nat. Commun. 16, 3167 (2025).
Google Scholar
Pyzik, M., Kozicky, L. K., Gandhi, A. K. & Blumberg, R. S. The therapeutic age of the neonatal Fc receptor. Nat. Rev. Immunol. 23, 415–432 (2023).
Google Scholar
Akaiwa, M., Dugal-Tessier, J. & Mendelsohn, B. A. Antibody–drug conjugate payloads; study of auristatin derivatives. Chem. Pharm. Bull. (Tokyo) 68, 201–211 (2020).
Google Scholar
Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).
Google Scholar
Ejigah, V. et al. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers 14, 2601 (2022).
Google Scholar
Tolcher, A. W. et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol. 17, 478 (1999).
Google Scholar
Hendrikx, J. J. M. A. et al. Fixed dosing of monoclonal antibodies in oncology. Oncologist 22, 1212 (2017).
Google Scholar
Li, Y. et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci. Transl. Med. 13, eabc6894 (2021).
Google Scholar
Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).
Google Scholar
Dale, B. et al. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 21, 638–654 (2021).
Google Scholar
Wu, T. et al. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol. 27, 605–614 (2020).
Google Scholar
Li, X. & Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol. 13, 50 (2020).
Google Scholar
Raina, K. et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 113, 7124–7129 (2016).
Google Scholar
Noblejas-López, M. et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J. Exp. Clin. Cancer Res. 38, 383 (2019).
Google Scholar
Sun, X. et al. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov. 5, 10 (2019).
Google Scholar
Noblejas-López, M. et al. MZ1 co-operates with trastuzumab in HER2 positive breast cancer. J. Exp. Clin. Cancer Res. 40, 106 (2021).
Google Scholar
Dragovich, P. S. Degrader-antibody conjugates. Chem. Soc. Rev. 51, 3886–3897 (2022).
Google Scholar
Chen, W. et al. MUC1: structure, function, and clinic application in epithelial cancers. Int. J. Mol. Sci. 22, 6567 (2021).
Google Scholar
Cheever, M. A. et al. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).
Google Scholar
Liu, B. et al. An organometallic swap strategy for bottlebrush polymer–protein conjugate synthesis. Chem. Commun. 60, 4238–4241 (2024).
Google Scholar
Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).
Google Scholar
Bai, S. et al. Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy. Bioact. Mater. 6, 2894–2904 (2021).
Google Scholar
Rabanel, J. M. et al. Deep tissue penetration of bottle-brush polymers via cell capture evasion and fast diffusion. ACS Nano 16, 21583–21599 (2022).
Google Scholar
Strasser, P. et al. Degradable bottlebrush polypeptides and the impact of their architecture on cell uptake, pharmacokinetics, and biodistribution in vivo. Small 19, 2300767 (2023).
Google Scholar
Qi, Y. et al. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 1, 0002 (2016).
Google Scholar
Gil Alvaradejo, G. et al. Polyoxazoline-based bottlebrush and brush-arm star polymers via ROMP: syntheses and applications as organic radical contrast agents. ACS Macro Lett. 8, 473–478 (2019).
Google Scholar
Shieh, P., Nguyen, H. V. T. & Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush, and star copolymers through ROMP. Nat. Chem. 11, 1124–1132 (2019).
Google Scholar
Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).
Google Scholar
Oakley, J. V. et al. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl Acad. Sci. USA 119, e2203027119 (2022).
Google Scholar
Pan, C., Knutson, S. D., Huth, S. W. & MacMillan, D. W. C. µMap proximity labeling in living cells reveals stress granule disassembly mechanism. Nat. Chem. Biol. 21, 490–500 (2025).
Google Scholar
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
Google Scholar
Demichev, V. et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat. Commun. 13, 3944 (2022).
Google Scholar
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
Google Scholar
Liu, B. et al. Data for ‘antibody-bottlebrush prodrug conjugates for targeted cancer therapy’. figshare. https://doi.org/10.6084/m9.figshare.29414048 (2025).