Breaking News

Antibody–bottlebrush prodrug conjugates for targeted cancer therapy

  • Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    PubMed 

    Google Scholar 

  • Wang, Z., Li, H., Gou, L., Li, W. & Wang, Y. Antibody–drug conjugates: recent advances in payloads. Acta Pharm. Sin. B 13, 4025–4059 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hobson, A. D. Chapter One – Antibody drug conjugates beyond cytotoxic payloads. Prog. Med. Chem. 62, 1–59 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tarantino, P., Ricciuti, B., Pradhan, S. M. & Tolaney, S. M. Optimizing the safety of antibody–drug conjugates for patients with solid tumours. Nat. Rev. Clin. Oncol. 20, 558–576 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dumontet, C., Reichert, J. M., Senter, P. D., Lambert, J. M. & Beck, A. Antibody–drug conjugates come of age in oncology. Nat. Rev. Drug Discov. 22, 641–661 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chalouni, C. & Doll, S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res. 37, 20 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tashima, T. Delivery of drugs into cancer cells using antibody–drug conjugates based on receptor-mediated endocytosis and the enhanced permeability and retention effect. Antibodies 11, 78 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • ADCs’ revival. Nat. Biotechnol. 41, 740 (2023).

  • Tarantino, P. et al. Antibody–drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 72, 165–182 (2022).

    PubMed 

    Google Scholar 

  • Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gan, H. K., van den Bent, M., Lassman, A. B., Reardon, D. A. & Scott, A. M. Antibody–drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat. Rev. Clin. Oncol. 14, 695–707 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the ‘biological missile’ for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tong, J. T. W., Harris, P. W. R., Brimble, M. A. & Kavianinia, I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules 26, 5847 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Criscitiello, C., Morganti, S. & Curigliano, G. Antibody–drug conjugates in solid tumors: a look into novel targets. J. Hematol. Oncol. 14, 20 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nagayama, A., Ellisen, L. W., Chabner, B. & Bardia, A. Antibody–drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target. Oncol. 12, 719–739 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Jabbour, E., Paul, S. & Kantarjian, H. The clinical development of antibody–drug conjugates—lessons from leukaemia. Nat. Rev. Clin. Oncol. 18, 418–433 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yu, B. & Liu, D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J. Hematol. Oncol. 12, 94 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, P. et al. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B 10, 1589–1600 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nessler, I., Menezes, B. & Thurber, G. M. Key metrics to expanding the pipeline of successful antibody–drug conjugates. Trends Pharmacol. Sci. 42, 803–812 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mckertish, C. M. & Kayser, V. Advances and limitations of antibody drug conjugates for cancer. Biomedicines 9, 872 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Su, Z. et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharm. Sin. B 11, 3889–3907 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Abelman, R. O., Wu, B., Spring, L. M., Ellisen, L. W. & Bardia, A. Mechanisms of resistance to antibody–drug conjugates. Cancers 15, 1278 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nguyen, T. D., Bordeau, B. M. & Balthasar, J. P. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers 15, 713 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chudasama, V., Maruani, A. & Caddick, S. Recent advances in the construction of antibody–drug conjugates. Nat. Chem. 8, 114–119 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Adams, E., Wildiers, H., Neven, P. & Punie, K. Sacituzumab govitecan and trastuzumab deruxtecan: two new antibody–drug conjugates in the breast cancer treatment landscape. ESMO Open 6, 100204 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Goldenberg, D. M. & Sharkey, R. M. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin. Biol. Ther. 20, 871–885 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rubahamya, B., Dong, S. & Thurber, G. M. Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data. Sci. Adv. 10, eadk1894 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kukkar, D., Kukkar, P., Kumar, V., Hong, J. & Kim, K. H. A. Deep, recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens. Bioelectron. 173, 112787 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yurkovetskiy, A. V. et al. Dolaflexin: a novel antibody–drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol. Cancer Ther. 20, 885–895 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Müllner, M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem. Commun. 58, 5683–5716 (2022).

    Article 

    Google Scholar 

  • Johnson, J. A. et al. Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to. J. Am. Chem. Soc. 133, 559–566 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Golder, M. R. et al. Reduction of liver fibrosis by rationally designed macromolecular telmisartan prodrugs. Nat. Biomed. Eng. 2, 822–830 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bhagchandani, S. H. et al. Engineering kinetics of TLR7/8 agonist release from bottlebrush prodrugs enables tumor-focused immune stimulation. Sci. Adv. 9, eadg2239 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liao, L. et al. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc. 136, 5896–5899 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article 
    CAS 

    Google Scholar 

  • Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article 
    CAS 

    Google Scholar 

  • Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fu, L., Zhang, T., Fu, G. & Gutekunst, W. R. Relay conjugation of living metathesis polymers. J. Am. Chem. Soc. 140, 12181–12188 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Knall, A. C. & Slugovc, C. Inverse electron demand Diels–Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42, 5131–5142 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Oh, D. Y. & Bang, Y. J. HER2-targeted therapies—a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nakada, T., Sugihara, K., Jikoh, T., Abe, Y. & Agatsuma, T. The latest research and development into the antibody–drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem. Pharm. Bull. (Tokyo) 67, 173–185 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hou, Y. & Lu, H. Protein PEPylation: a new paradigm of protein–polymer conjugation. Bioconjug. Chem. 30, 1604–1616 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, P., Yun, W., Sun, T., Lin, J. & Zhang, K. Enabling safer, more potent oligonucleotide therapeutics with bottlebrush polymer conjugates. J. Control. Release 366, 44–51 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yu, X. et al. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature 614, 539–547 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Oostindie, S. C., Lazar, G. A., Schuurman, J. & Parren, P. W. H. I. Avidity in antibody effector functions and biotherapeutic drug design. Nat. Rev. Drug Discov. 21, 715–735 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gall, V. A. et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 77, 5374–5383 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vohidov, F. et al. Design of BET inhibitor bottlebrush prodrugs with superior efficacy and devoid of systemic toxicities. J. Am. Chem. Soc. 143, 4714–4724 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zafar, H., Liu, B., Nguyen, H. V. T. & Johnson, J. A. Caspase-3-responsive, fluorogenic bivalent bottlebrush polymers. ACS Macro Lett. 13, 571–576 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tsao, L. et al. Effective extracellular payload release and immunomodulatory interactions govern the therapeutic effect of trastuzumab deruxtecan (T-DXd). Nat. Commun. 16, 3167 (2025).

    Article 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pyzik, M., Kozicky, L. K., Gandhi, A. K. & Blumberg, R. S. The therapeutic age of the neonatal Fc receptor. Nat. Rev. Immunol. 23, 415–432 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Akaiwa, M., Dugal-Tessier, J. & Mendelsohn, B. A. Antibody–drug conjugate payloads; study of auristatin derivatives. Chem. Pharm. Bull. (Tokyo) 68, 201–211 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ejigah, V. et al. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers 14, 2601 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tolcher, A. W. et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol. 17, 478 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hendrikx, J. J. M. A. et al. Fixed dosing of monoclonal antibodies in oncology. Oncologist 22, 1212 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, Y. et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci. Transl. Med. 13, eabc6894 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dale, B. et al. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 21, 638–654 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, T. et al. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol. 27, 605–614 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, X. & Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol. 13, 50 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Raina, K. et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 113, 7124–7129 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Noblejas-López, M. et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J. Exp. Clin. Cancer Res. 38, 383 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, X. et al. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov. 5, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noblejas-López, M. et al. MZ1 co-operates with trastuzumab in HER2 positive breast cancer. J. Exp. Clin. Cancer Res. 40, 106 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dragovich, P. S. Degrader-antibody conjugates. Chem. Soc. Rev. 51, 3886–3897 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, W. et al. MUC1: structure, function, and clinic application in epithelial cancers. Int. J. Mol. Sci. 22, 6567 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cheever, M. A. et al. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, B. et al. An organometallic swap strategy for bottlebrush polymer–protein conjugate synthesis. Chem. Commun. 60, 4238–4241 (2024).

    Article 
    CAS 

    Google Scholar 

  • Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bai, S. et al. Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy. Bioact. Mater. 6, 2894–2904 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rabanel, J. M. et al. Deep tissue penetration of bottle-brush polymers via cell capture evasion and fast diffusion. ACS Nano 16, 21583–21599 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Strasser, P. et al. Degradable bottlebrush polypeptides and the impact of their architecture on cell uptake, pharmacokinetics, and biodistribution in vivo. Small 19, 2300767 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Qi, Y. et al. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 1, 0002 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gil Alvaradejo, G. et al. Polyoxazoline-based bottlebrush and brush-arm star polymers via ROMP: syntheses and applications as organic radical contrast agents. ACS Macro Lett. 8, 473–478 (2019).

    Article 

    Google Scholar 

  • Shieh, P., Nguyen, H. V. T. & Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush, and star copolymers through ROMP. Nat. Chem. 11, 1124–1132 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Oakley, J. V. et al. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl Acad. Sci. USA 119, e2203027119 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pan, C., Knutson, S. D., Huth, S. W. & MacMillan, D. W. C. µMap proximity labeling in living cells reveals stress granule disassembly mechanism. Nat. Chem. Biol. 21, 490–500 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Demichev, V. et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat. Commun. 13, 3944 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, B. et al. Data for ‘antibody-bottlebrush prodrug conjugates for targeted cancer therapy’. figshare. https://doi.org/10.6084/m9.figshare.29414048 (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button