Breaking News

A rapid imaging-based screen for induced-proximity degraders identifies a potent degrader of oncoprotein SKP2

  • Dale, B. et al. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 21, 638–654 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Samarasinghe, K. T. G. & Crews, C. M. Targeted protein degradation: a promise for undruggable proteins. Cell Chem. Biol. 28, 934–951 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins. Nat. Commun. 15, 8695 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142.e20 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57, 3564–3575 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Han, X. et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem. 62, 941–964 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zeng, M. et al. Exploring targeted degradation strategy for oncogenic KRASG12C. Cell Chem. Biol. 27, 19–31.e6 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dong, G., Ding, Y., He, S. & Sheng, C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J. Med. Chem. 64, 10606–10620 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ting, P. Y. et al. A molecular glue degrader of the WIZ transcription factor for fetal hemoglobin induction. Science 385, 91–99 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Clackson, T. et al. Redesigning an FKBP–ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl Acad. Sci. USA 95, 10437–10442 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Domostegui, A., Nieto-Barrado, L., Perez-Lopez, C. & Mayor-Ruiz, C. Chasing molecular glue degraders: screening approaches. Chem. Soc. Rev. 51, 5498–5517 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Koduri, V. et al. Targeting oncoproteins with a positive selection assay for protein degraders. Sci. Adv. 7, eabd6263 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Garber, K. The glue degraders. Nat. Biotechnol. 42, 546–550 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, Z., Liu, P., Inuzuka, H. & Wei, W. Roles of F-box proteins in cancer. Nat. Rev. Cancer 14, 233–247 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1, 193–199 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, J. et al. Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 31, 80–93 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 151, 913–914 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cai, Z. et al. The Skp2 pathway: a critical target for cancer therapy. Semin. Cancer Biol. 67, 16–33 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang, G. et al. Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2. Oncogene 39, 7034–7050 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Reichert, M., Saur, D., Hamacher, R., Schmid, R. M. & Schneider, G. Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res. 67, 4149–4156 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Andreu, E. J. et al. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res. 65, 3264–3272 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sarmento, L. M. et al. Notch1 modulates timing of G1–S progression by inducing SKP2 transcription and p27Kip1 degradation. J. Exp. Med. 202, 157–168 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rodriguez, S. et al. Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL. Leukemia 34, 1241–1252 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, S. et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2. Cancer Cell 31, 669–684.e7 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Connell, P. et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 3, 93–96 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA 99, 12847–12852 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408, 381–386 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mercer, J. A. M. et al. Continuous evolution of compact protein degradation tags regulated by selective molecular glues. Science 383, eadk4422 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ma, D. et al. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 10, 3708–3721 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xu, W. et al. Compartmentalization-aided interaction screening reveals extensive high-order complexes within the SARS-CoV-2 proteome. Cell Rep. 36, 109482 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bennett, J. L., Nguyen, G. T. H. & Donald, W. A. Protein–small molecule interactions in native mass spectrometry. Chem. Rev. 122, 7327–7385 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chan, C. H. et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556–568 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, S. T., Ho, H. J., Lin, J. T., Shieh, J. J. & Wu, C. Y. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis. 8, e2626 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Su, J., Zhou, X., Wang, L., Yin, X. & Wang, Z. Curcumin inhibits cell growth and invasion and induces apoptosis through down-regulation of Skp2 in pancreatic cancer cells. Am. J. Cancer Res. 6, 1949–1962 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huang, H. C., Way, T. D., Lin, C. L. & Lin, J. K. EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology 149, 5972–5983 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yang, E. S. & Burnstein, K. L. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm. J Biol. Chem. 278, 46862–46868 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Elahi, A. H. et al. Targeted pharmacologic inhibition of S-phase kinase-associated protein 2 (SKP2) mediated cell cycle regulation in lung and other RB-related cancers: a brief review of current status and future prospects. Adv. Biol. Regul. 88, 100964 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhao, H. et al. Targeted inhibition of the E3 ligase SCFSkp2/Cks1 has antitumor activity in RB1-deficient human and mouse small-cell lung cancer. Cancer Res. 80, 2355–2367 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chu, Y. et al. A rapid imaging-based screen for induced-proximity degraders identifies a potent degrader of oncoprotein SKP2. Mendeley Data https://data.mendeley.com/datasets/vnbpprr393/1 (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button